
1

Elementary “Principles” or ingredients

of Computer Programming

• Input Output

• Declaration statements: real; integer;
dimension; parameter; etc

• Execution statements: y = cos (x)

• Iterative statements or loops

• Control of transfer (“if” or “while”
statements)

• Functions, subprograms or Procedures

• End of lines

2

Calculation of the value of sin (x) at

101 equispaced points
• c calculate the value of sin (x) at 101 equispaced points

between 0 and 2pi (including the end points).

• twopi = 2.0 * 3.14159265

• c

• write (*,*) ‘101 values of sin(x)’

• do 10 i =1, 101

• x = real (i-1) * 0.01 * twopi

• y = sin (x)

• write (*, *) ‘x and sin (x) =’, x, y

c the above statement can be improved)

• 10 continue

• end

3

What you are expected to learn in this course

• Run elementary programs for calculating

• Fibonacci series, the sine function,

• energy conversion factors, use of dimensioned variables,

• arrranging numbers is ascending order,

• solve a quadratic eq.,

• elementary interpolation and integration,

• matrix multiplication, reading and writing to files, and

• Using scilab to diagonalize matrices,

• plot elementary wavefunctions, and

• solve differential equations.

4

do 10 i =1, 100, 1

• the last part ‘1’ indicates that i is incremented by 1 every
time.

• If we want to increment the variable i in steps of 2, we use

• do 10 i =1, 100, 2

• executable statements

• 10 continue

• There are other alternatives to the do statement such as

• sum = 0.0
do i=1, 100,2
sum = sum +(real (i))**3
end do

• Computer treats real numbers and integers very differently

5

Observe the graph

6

We need to write a program which gives the value of

f (x) as per the above formula. This is given below.

The use of “relational operators”: .lt. , .eq. , ..

• read (*, *) x

• if (x.lt.0.0) then

• funct = 0.0

• else if (0.0 .le. x .and. x .lt. 5.0) then

• funct = 5.0

• else if (5.0.le. x .and. x .lt. 10.0) then

• funct = 10.0

• else

• funct = x

• endif

• write (*,*) ‘ x, funct= ', x, funct

• end

• c the above program illustrates the use of the if statement

7

Some useful linux commands

ls – l (list all the files in a directory)

• mkdir newdir

• cd newdir (change directory to newdir)

• cd .. (go back to the earlier directory)

• cp file1 file2 (copy file1 to file2); rm file3

• help (help on a command)

• man f77 (manual for a command)

8

Solution of a quadratic equation

• The general form of the quadratic equation is

• a x * x + bx + c

The roots of this equation are

• [- b + (b * b – 4.0 * a * c) **(1/2)] / (2*a)

• [- b - (b * b – 4.0 * a * c) **(1/2)] / (2*a)

9

program quadratic

• c program quadratic

• write (*, *) 'input the values of a, b and c:'

• read (*, *) a, b, c

• if ((a .eq. 0.0) .and. (b .ne. 0.0)) then

• x = -c/b

• twoa =2.0*a

• write (*, *) 'the solution of linear equation x=', x

• go to 100

• else if ((a .eq. 0.0) .and. (b .eq. 0.0)) then

• write (*, *) 'both coefficients a and b are zero'

• go to 100

• endif

10

ww = b * b - 4.0 * a * c

if (ww .lt. 0.0) then

go to 50

else

rtofww = sqrt (ww)

root1 =(-b + rtofww) / twoa

root2 =(-b - rtofww) / twoa

write (*, *) 'real roots 1 and 2 are = ', root1, root2

go to 100

endif

50 continue

c the roots are complex b**2 - 4 * a * c is -ve

ww = 4.0 * a * c - b * b

rtofww = sqrt (ww)

realpt = -b / twoa

c do not use impt1 as it will treat it as in integer variable !!!!

ximpt1 = rtofww / twoa

write (*, *) 'complex roots'

write (*, *) 'root1 ', ‘ real part = ', realpt, ‘ imaginary part = ’ , ximpt1

ximpt2 = -ximpt1

write (*, *) 'root2', ‘ real part= ', realpt, ‘ imaginary part=‘ , ximpt2

100 continue

end

11

Summary: The main ingredients of a program

• 1) an instruction to carry out a mathematical
operation (such as evaluating a formula for a given
value of a variable),

• 2) repeating a calculation until a condition is satisfied,

• 3) allocation of storage space for calculated quantities
such as matrices

• 4) reading inputs from files and writing the output to
files as well as the computer screen,

• 5) terminating the program either on completion or
giving messages if something has gone wrong with the
execution of the program.

12

SUBSCRIPTED VARIABLES

• There are large groups of variables which are
extremely similar in character and it is very
laborious to give distinctive names to each value
of the variable. Consider the temperature for
every hour during the whole year. If each
temperature has to be given a unique and
distinctive name, we will need 365 × 24 names
and the program to even read this data will be in
thousands of lines. An elegant way to circumvent
this difficulty is to use subscripted variables

• dimension tempval (365, 24)

13

Using Arrays

dimension temp(365,24)

do 100 i = 1, 365

• do 90 i = 1, 24

• read (*, *) temp (i, j)

• 90 continue

• 100 continue

• ____________________________________

• Meaning of temp(22,33)

• Element of 22nd row and 33rd column of a two
dimensional array temp

• Ex: vect(3), coach(10111, 325, 4, 45)

14

Reading and writing to files

• DIMENSION tempval (365, 24)

• open (unit = 11, file = 'input.dat')

• open (unit = 12 ,file = 'output')

• C the following line contains implicit ‘do’ statements

• read (11, *) ((tempval (i, j), j = 1,24), i 1,= 365)

• c calculate the average temp each day & write to file output

• do 100 i = 1, 365

• xx= 0.0

• do 90 j = 1,24

• xx = xx + tempval (i,j)

• 90 continue

• avtemp = xx /24.0

• 100 write (12, *) 'day no =', i, 'average temp = ', avtemp

• close (12)

• close (11)

• end

15

A program to multiply two matrices is given below.

We shall consider only square matrices.

The (i, j) th element of the product c of two n × n a and

b matrices is

c (i,j) = ∑ a (i , k) * b (k , j), k = 1 , n

THE MATRIX MULTIPLICATION

PROGRAM

16

c program matrix multiplication

dimension a(100,100), b(100,100), c(100,100)

open (unit=11, file='mata.dat')

open (unit=12, file= 'matb.dat')

open (unit=13, file= 'matc.dat')

write (*,*) 'value of n of the n x n matrix is = '

read (*,*) n

read (11, *) ((a(i, j), j = 1,n), i = 1,n)

read (12, *) ((b(i,j), j =1,n), i = 1 ,n)

1 continue

do 10 i =1, n

do 10 j =1, n

sum = 0.0

do 5 k= 1, n

5 sum = sum + a(i,k) * b(k,j)

c(i,j) = sum

10 write (13, *) ' c (i, j) = ', c(i, j)

close(13)

close(12)

close(11)

end

17

PROGRAMME TO ARRANGE NUMBERS IN AN ASCENDING ORDER

c Let us see how to exchange the values of two numbers.

a= 2.0

b = 3.0

c the simplest way to attempt this is by doing

b = a

a = b

c but this does not achieve the desired result !!! The correct way is

temp = a

a = b

b = temp

c program to arrange the number in an ascending order

c read the data from file input and write to file output

dimension a(500),result(500)

open (unit=15, file = 'input')

open (unit=16, file = 'output')

write(*,*) 'input n (the no.of points) on screen'

read (*,*) n

do i=1,n

read(15,*) a(i)

result(i)= a (i)

end do

18

do 100 i= 1, n-1

do 50 j=i+1,n

small = result(i)

if (result(j) .lt. small) then

result(i)=result(j)

result(j)=small

end if

50 continue

100 continue

do 200 j= 1,n

write (*,*) result(j)

200 continue

close(16)

close(15)

end

19

Summary of lectures 4 and 5

• More ingredients of programmes

• If statements to transfer control

• Some more linux commands

• Programme for a quadratic equation

• Dimensioned variables/arrays

• Reading and writing to files

• Programs for matrix multiplication and
arranging numbers in an ascending order

